Spotted Lanternity (Lycorma delicatula) Phenology/Degree-Day and Climate Suitability Model Analysis – Feb 2024 by Len Coop and Brittany Barker, Oregon IPM Center, Oregon State University for NIFA AFRI TSAB

Hosts: tree of heaven (Ailanthus spp.), many commercial perrenials including wine grapes, tree fruits, black walnut, willow, etc. Goal: Develop a phenology model and temperature-based climate suitability model using available literature and weather data analysis

Adult

Nymphs

Life cycle diagram

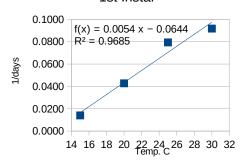
Key stages: 1. Egg Hatch 2. Early nymph - appearance of second or third instar. 3. 1st emergence of adults

Thresholds, degree-days, events and climate suitability params used in spotted lanternfly model:

Parameter abbr.	<u>Description</u>	degF	degC	DDF	DDC
eggLDT	egg lower dev threshold	50.0	10.00	-	-
eggUDT	egg upper dev threshold	95.0	35.0	-	-
larvaeLDT	larvae lower dev threshold	50.0	10.00	-	-
larvaeUDT	larvae upper dev threshold	95.0	35.0	-	-
pupaeLDT	pupae lower dev threshold	50.0	10.00	-	-
pupaeUDT	pupae upper dev threshold	95.0	35.0	-	-
adultLDT	adult lower develpmental threshold	50.0	10.00	-	-
adultUDT	adult upper dev threshold	95.0	35.0	-	-
eggDD	duration of egg stage in spring in DDs	-	-	364	202
larvaeDD	duration of 1st through 4th instars in DDs	-	-	1602	890
pupaeDD	duration of pre-oviposition period in DDs	-	-	1134	630
adultDD	duration of adult stage from 1st to 50% OV in DDs	-	-	263	146
OWeggDD	DDs until OW egg first hatch	-	-	varies	varies
OWEventLabel	egg hatch	-	-	-	-
eggEventDD	DDs into egg stage when diapause begins	-	-	180	100
eggEventLabel	diapausing eggs	-	-	-	-
larvaeEventDD	DDs until approx midpoint of nymphal development	-	-	796	442
larvaeEventLabel	nymphs halfway developed	-	-	-	-
pupaeEventDD	DDs until first adults	-	-	2	1
pupaeEventLabel	first adults	-	-	-	-
adultEventDD	DDs until first egg laying	-	-	2	1
adultEventLabel	first egg laying	-	-	-	-
coldstress threshold	cold stress threshold	3.2	-16	-	-
coldstress units max1	cold stress degree day limit when most individuals die	-	-	540	300
coldstress units max2	cold stress degree day limit when all individuals die	-	-	855	475
heatstress threshold	heat stress threshold	98.6	37	-	_
heatstress units max1	heat stress degree day limit when most individuals die	_	-	207	115
heatstress units max2	heat stress degree day limit when all individuals die	-	-	315	175
distro_mean	average DDs to OW egg first hatch	-	-	342	190
distro_var	variation in DDs to OW egg first hatch	-	-	27000	15000
xdist1	minimum DDs (°C) to OW egg first hatch	-	-	180	135
xidst2	maximum DDs (°C) to OW egg first hatch	-	-	648	360
distro_shape	shape of the distribution	-	-		normal

PHENOLOGY MODEL ANALYSIS

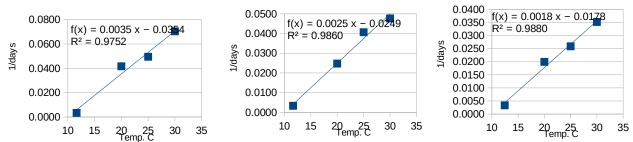
Phenology Model Summary:

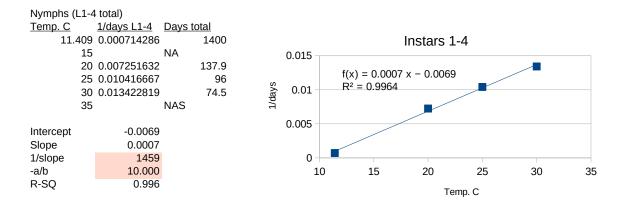

Model for uspest.org/dd/model_app Spotted lanternfly degree-day model parameters: start date: Jan 1st (nominal) Calc. method: single sine

calc. methou: single si	ie		
	Celsius/DD (C)	Fahr. /DD (F)	
Lower threshold:	10	50	
Upper threshold:	35	95	
First Egg hatch	202	364	
Peak Egg hatch	279	503	
Peak first instars	375	674	
Peak second instars	541	974	
Peak third instars	726	1307	
Peak fourth instars	991	1784	
First Adults	1045	1881	
Peak Adults	1463	2633	
First egg-laying	1675	3015	
Peak egg-laying	1821	3278	

Sources: 1. Kreitman, D. M., A. Keena, A. L. Nielsen, and G. Hamilton. 2020. Effects of temperature on development and survival of nymphal *Lycorma delicatula*. Env. Entomol. 50:183-191.

	••.												
Table 2.	l	L1=1st Instar			L2=2nd Insta	r			L3=3rd Instar			L4=4th Instar	females only
<u>Temp. C</u>	2	<u>1/days L1</u>	<u>Days L1</u>	<u>Temp. C</u>	<u>1/days L2</u>	<u>Days L2</u>	<u>Temp.</u>	C	<u>1/days L3</u>	<u>Days L3</u>	<u>Temp. C</u>	<u>1/days L4</u>	<u>Days L4</u>
		0.0033	300	11.642	0.0033	3 3	00	11.649	0.0033	300) 12.444	0.0033	300
	15	0.0140	71.3	15				15			15	5	85.5
	20	0.0427	23.4	20	0.0417	7	24	20	0.0248	40.4	4 20	0.0200	50.1
	25	0.0794	12.6	5 25	0.0495	5 20).2	25	0.0407	24.6	6 25	0.0259	38.6
	30	0.0917	10.9	30	0.0704	l 14	1.2	30	0.0476	5 21	. 30	0.0352	28.4
intercept		-0.0644			-0.0354	Ļ			-0.0249)		-0.0178	5
slope		0.0054			0.0035	5			0.0025	5		0.0018	}
1/slope		185			283	3			401			562	2
-b/a		11.94			10.00)			10.00)		10.00)
R-SQ		0.968			0.975	5			0.986	i		0.988	}


1st Instar



Results: A lower developmental threshold of 10C appears to provide an excellent fit to the data, with R-sq values ranging from 0.96 – 0.99 for instars 1-4. Associated Degree-days for development were 213, 283, 401, 562, and 1,459 for instars 1, 2, 3, 4, and for instars 1-4 total. However, as Maino et al. 2021 pointed out, these development times are too slow compared to other works, including the several studies that tracked development in the field. Therefore, these development times in DDs are not usable.

2. Liu, H. 2019. Oviposition substrate selection, egg mass characteristics, host preference, and life history of the spotted lanternfly (Hemiptera: Fulgoridae) in North America. Env. Entomol. 48:1452-1468.

- Study sites in Banks Co., Pennsylvania 2016-17

- Seasonal development site known as OD South, weather station DW9872 (5m NE of Oley, SW of Allentown, PA), 2017

- S1DD10 = single sine DDs 10C lower threshold

From Table 5&Fig 7. Lif	fe history table and o	degree-days Statio	on D9872, 2	2017	nearby stations to Comp. E3190 Co				Site Model CALIB 2 sta D9872	
C C	-	ADDs10CJan ADI	Ds10CJan E	Elev 427 ft	Reading PA Bo					
		Ele	v 427 ft S	S1DD10C	Elev 1115 ft El	ev 689 ft			days	
<u>Stage</u>	Date	<u>ca. from Tableusp</u>	est rerun J	Jan1	S1DD10CJan S2	LDD10CJan1			diff	
First Egg hatch	05/01/17	160	144	189	147	178			05/04/17	3
Peak egg hatch	05/15/17		178	232	173	216			05/20/17	5
End egg hatch	06/05/17	340	325	381	306	358				
							-: -			
First L1	05/02/17	160	153	198	153	187	150	- E- Substrate type A → Substrate type B		
Peak L1	06/05/17		325	381	306	358		····∆···· Substrate type C → Substrate type D	06/05/17	0
End L1	07/03/17	738	644	707	620	678		Ĩ.		
First L2	06/08/17		338	397	319	373	100			
Peak L2	06/22/17		512	574	493	546	Itchec		06/20/17	-2
End L2	07/20/17	900	881	939	836	902	N. N. V.			
First L3	06/25/17	600	558	616	529	584	50			
Peak L3	07/06/17		682	745	654	715	⁵⁰ A / E	A TA DA-A	07/05/17	-1
End L3	07/31/17	1050	1020	1078	962	1037	X ``\	1 A. A.		
First L4	07/10/17		738	796	701	763				
Peak L4	07/31/17	1050	1020	1078	962	1037	0 5/2 5/4 5/8	5/11 5/15 5/18 5/22 5/25 5/30 6/1 6/5	07/24/17	-7
End L4	08/20/17		1251	1309	1183	1259		Date		
First Adult	07/20/17	900	881	939	836	902			07/28/17	8
Peak Adult	08/22/17		1265	1331	1211	1286			09/09/17	18
End Adult	11/15/17		1795	1878	1712	1811				
First oviposition	10/01/17	1644	1620	1682	1543	1627			09/29/17	-2
Peak oviposition	10/22/17	1795	1755	1828	1679	1764			10/21/17	-1
End oviposition	10/31/17		1778	1858	1699	1792				

Results: With 1 location year, rather complete phenology data that should carry more weight perhaps vs. Murman et al. Data. The suggested weather station was D9872, which was warmer than two other nearby weather stations (that are at slightly higher elevations). Weight: 1.0

3. Nixon, L.J., H. Leach, C. Barnes, J. Urban, et al. 2020. Development of behaviorally based monitoring and biosurveillance tools for the invasive spotted lanternfly (Hemiptera: Fulgoridae). Environ. Entomol. 49: 1117-1126.

- Primarily testing new traps and attractants; work done in Virginia and Pennsylvania

Location 1: A community park in Winchester, VA (39°12′22″N, 78°9′18″W): uspest.org station E8890 or KOKV Location 2: A memorial park in Reading, PA (40°20′50.3″N, 75°54′08.1″W): uspest.org station E3190

Note: KOKV is much cooler than most all stations surrounding it – better to use E8890 & E5449 (average) as representative of the area

							o a 20 : 10 (are				Site model ca	alib 2			
	From Fig. 5. S	Stages present	in VA and PA	2019							Sta E5449				
	VA	Elev 728 ft	Elev 823 ft	Elev 666	PA	Elev 1115 ft							days	days	
		KOKV	E8890	E5449		E3190	extra col. To	Average	Average				diff	diff	
<u>Stage</u>	<u>Date</u>	S1DDs10CJa	S1DDs10CJa	<u>S1DDs10CJa</u>	<u>Date</u>	S1DDs10CJa	<u>match weight</u>	KOKV&E3190	E8890&E5449	<u> &E3190</u>	VA	PA	VA	PA	
First L1	05/10/19	252	280	321	05/28/19	270	270	261	285		04/27/19	05/20/19		-13	-8
Peak L1	05/23/19	336	369	422	06/05/19	338	338	337	367		05/19/19	06/09/19		-4	4
End L1	06/07/19	497	532	607	07/02/19	620	620	559	595						
First L2	05/24/19	348	380	436	06/06/19	350	350	349	379						
Peak L2	06/06/19	486	521	594	06/19/19	462	462	474	510		06/01/19	06/26/19		-5	7
End L2	06/22/19	649	686	784	07/12/19	754	754	702	745						
First L3	06/15/19	561	597	683	06/15/19	418	418	490	529						
Peak L3	06/28/19	728	766	873	07/03/19	634	634	681	727		06/18/19	07/10/19		-10	7
End L3	07/10/19	899	940	1060	07/27/19	962	962	931	981						
First L4	07/04/19	818	854	971	07/10/19	729	729	774	821						
Peak L4	07/12/19	927	969	1090	07/21/19	887	887	907	958		07/06/19	07/29/19		-6	8
End L4	08/01/19	1216	1262	1408	08/28/19	1375	1375	1296	1355						
First Adult	07/23/19	1104	1144	1279	08/01/19	1035	1035	1070	1123		07/10/19	08/02/19		-13	1
Peak Adult	08/15/19	1400	1452	1619	08/27/19	1365	1365	1383	1450		08/05/19	09/07/19		-10	11
End Adult	11/02/19	2075	2137	2389	11/08/19	1788	1788	1932	2026						

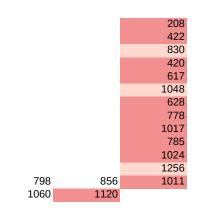
Results: With two site-years that are rather similar as to DD totals for each stage, average results are in good accord with other studies. Weight: 1.0

4. Murman, K., G. Setliff, et al. 2020. Distribution, survival, and development of spotted lanternfly on host plants found in North America. Env. Entomol. 49: 1270-1281.

Accessing supplemental material from:

https://oup.silverchair-cdn.com/oup/backfile/Content public/Journal/ee/49/6/10.1093 ee nvaa126/1/nvaa126 suppl supplementary material.pdf?

- Compared host preference and other traits between tree of heaven and other hosts, Burks Co, PA 2015-2016


- Phenology not major objective, so dates at least for 2015 are very approximate, much better for 2016

	05/15/15	uspest rerun	C3157 Boyertown PA <u>S1DDs10CJa</u> 200		<u>uspest rerun</u> 148		() 2017 I
First L1 Peak L1 End L1 First L2 Peak L2 End L2 First L3 Peak L3 End L3 First L4 Peak L4 End L4 First Adult Peak Adult	05/15/15 06/12/15 06/25/15 07/01/15 07/10/15 07/20/15 07/15/15 08/02/15	411 574 629 735 860 795 1021	447 447 610 665 771 897 832 1058	05/23/16 06/08/16 07/15/16 06/29/16 07/30/16 06/26/16 07/12/16 08/06/16 07/26/16 08/14/16 07/25/16	329 759 326 555 972 521 715 1059 667 913 1177	397 830 393 623 1048 590 785 1136 737 989 1256	07/17/17 08/08/17

Results: Degree-day accumulations generally agree well with Liu 2019 study. Weight: 0.7

Site model CALI	B 3				
		days diff	days diff	days diff	
2015 05/16/15	2016 05/20/16	2017	2015 1	2016 -3	2017
05/26/15	05/29/16			-7	
00/00/45	00/00/40		<u> </u>		
06/06/15	06/06/16		-6	-2	
06/20/15	06/22/16		-5	-7	
07/07/15	07/08/16		-3	-4	
07/28/15	07/26/16		-5	0	
08/01/15 09/05/15	07/30/16 08/29/16	08/01/17 09/16/17	-14	5	15 39

5. Smyers, E. C., J. M. Urban, A. C. Dechaine, et al. 2021. Spatio-temporal model for predicting spring hatch of the spotted lanternfly (Hemiptera: Fulgoridae). Env. Entomol. 50:126-137. - collected eggs from field and reared at constant temperatures, built model and compared to field hatch data. Found Tlow of 10.4 C from all data combined.


From Table 2 Temperature vs. time to egg hatch for PA and two Korean populations A) First Lump them all in one group:

	Temp C	1/days	<u>Days to hatch</u>								
forcing point	9.513	0.0008	1299			SLF e	ega deve	elopmen	t rate		
PA	19.9	0.0273	36.6		0.0700						
	24.2	0.0379	26.4								
	25.1	0.0495	20.2		0.0600			x - 0.031	3		
	26.7	0.0538	18.6		0.0500	R ²	= 0.9639			r	
Park (K1)	15	0.0138	72.6	ys							
	18	0.0222	45	1/days	0.0400						
	19	0.0246	40.7	н Н	0.0300						
	21	0.0319	31.3								
	23	0.0427	23.4		0.0200						
	24	0.0476	21		0.0100						
	27	0.0543	18.4			_ /					
	31	0.0654	15.3		0.0000			1			
Choi (K2)	15	0.0179	55.9		5	10	15	20	25	30	35
	20	0.0373	26.8				Tem	perature (C)			
	25	0.0463	21.6								
	intercept		-0.0313								
	slope		0.0031								
	R-sq		0.9639								
	1/slope		320								
	-b/a (x-intercer	ot)	10.000								

Results: The three sources combine well (R-SQ=0.96); 10 C is a good lower threshold for the combined data (with 1 forcing point), resulting in 320 DD for egg hatch.

PA 19.9 0.0273 36.6 24.2 0.0379 26.4 25.1 0.0495 20.2 26.7 0.0538 18.6 20.2 26.7 0.0538 72.6 19 0.0246 40.7 21 0.0319 31.3 23 0.0427 23.4 24 0.0476 21 27 0.0543 18.4 31 0.0654 15.3 Choi (K2) 15 0.0179 55.9 20 0.0373 26.8 25 0.0463 21.6 Average intercept -0.0519 -0.0379 -0.0230 -0.03753 slope 0.0039 0.0034 0.0028 0.00338 R-sq 0.9124 0.9842 0.9569 0.951153	• •	Temp C	PA 1/days	K1 1/days	K2 1/days	Days to hatch		
24.2 0.0379 26.4 25.1 0.0495 20.2 26.7 0.0538 72.6 Park (K1) 15 0.0138 72.6 19 0.0222 45 21 0.0319 31.3 23 0.0427 23.4 24 0.0476 21 27 0.0543 18.4 31 0.0654 15.3 Choi (K2) 15 0.0179 55.9 20 0.0373 26.8 25 0.0463 21.6 Average intercept -0.0519 -0.0379 -0.0230 slope 0.0039 0.0034 0.0028 0.00338 R-sq 0.9124 0.9842 0.9569 0.951154 1/slope 255.1 293.8 352.0 3					-		0	.(
25.1 0.0495 20.2 seg 26.7 0.0538 18.6 gg Park (K1) 15 0.0138 72.6 18.6 19 0.0222 45 45 45 21 0.0319 31.3 31.3 31.3 45 23 0.0427 23.4 23.4 45 46 40.7 46 40.7 46 40.7 46 40.7 46 40.7 46 40.7 46 40.7 46 40.7 46 40.7 46 40.7 46 40.7 46 40.7 46 40.7 46 40.7 46 40.7 46 40.7 46 40.7 46 40.7 46	PA	19.9	0.0273			36.6	0	(
26.7 0.0538 18.6 Nome Park (K1) 15 0.0138 72.6 18 0.0222 45 19 0.0246 40.7 21 0.0319 31.3 23 0.0427 23.4 24 0.0476 21 27 0.0543 18.4 31 0.0654 15.3 Choi (K2) 15 0.0179 55.9 20 0.0373 26.8 25 0.0463 21.6 Average intercept -0.0519 -0.0379 -0.0230 slope 0.0039 0.0034 0.0028 0.00338 R-sq 0.9124 0.9842 0.9569 0.951154 1/slope 255.1 293.8 352.0 3								
18 0.0222 45 19 0.0246 40.7 21 0.0319 31.3 23 0.0427 23.4 24 0.0543 18.4 31 0.0654 15.3 Choi (K2) 15 0.0179 55.9 20 0.0373 26.8 25 0.0463 21.6 Average intercept -0.0519 -0.0379 -0.0230 -0.0375 slope 0.0039 0.0034 0.0028 0.00388 R-sq 0.9124 0.9842 0.9569 0.95115 1/slope 255.1 293.8 352.0 3							ي 0	.(
18 0.0222 45 19 0.0246 40.7 21 0.0319 31.3 23 0.0427 23.4 24 0.0476 21 27 0.0543 18.4 31 0.0654 15.3 Choi (K2) 15 0.0179 55.9 20 0.0373 26.8 25 0.0463 21.6 Average intercept -0.0519 -0.0379 -0.0230 -0.03755 slope 0.0039 0.0034 0.0028 0.00388 R-sq 0.9124 0.9842 0.9569 0.951156 1/slope 255.1 293.8 352.0 33							0 (da)	.(
19 0.0246 40.7 21 0.0319 31.3 23 0.0427 23.4 24 0.0476 21 27 0.0543 18.4 31 0.0654 15.3 Choi (K2) 15 0.0179 55.9 20 0.0373 26.8 25 0.0463 21.6 Average intercept -0.0519 -0.0379 -0.0375 slope 0.0039 0.0034 0.0028 0.00388 R-sq 0.9124 0.9842 0.9569 0.951156 1/slope 255.1 293.8 352.0 3	Park (K1)							
21 0.0319 31.3 23 0.0427 23.4 24 0.0476 21 27 0.0543 18.4 31 0.0654 15.3 Choi (K2) 15 0.0179 55.9 20 0.0373 26.8 25 0.0463 21.6 Average intercept -0.0519 -0.0379 -0.0230 slope 0.0039 0.0034 0.0028 0.00388 R-sq 0.9124 0.9842 0.9569 0.951156 1/slope 255.1 293.8 352.0 33							0	.(
23 0.0427 23.4 24 0.0476 21 27 0.0543 18.4 31 0.0654 15.3 Choi (K2) 15 0.0179 55.9 20 0.0373 26.8 25 0.0463 21.6 Average intercept -0.0519 -0.0379 -0.0230 slope 0.0039 0.0034 0.0028 0.003388 R-sq 0.9124 0.9842 0.9569 0.951156 1/slope 255.1 293.8 352.0 33							0	.(
24 0.0476 21 27 0.0543 18.4 31 0.0654 15.3 Choi (K2) 15 0.0179 20 0.0373 26.8 25 0.0463 21.6 Average intercept -0.0519 -0.0379 slope 0.0039 0.0034 0.0028 R-sq 0.9124 0.9842 0.9569 1/slope 255.1 293.8 352.0							0	,
27 0.0543 18.4 31 0.0654 15.3 Choi (K2) 15 0.0179 55.9 20 0.0373 26.8 25 0.0463 21.6 Average intercept -0.0519 -0.0379 -0.0230 slope 0.0039 0.0034 0.0028 0.00388 R-sq 0.9124 0.9842 0.9569 0.951156 1/slope 255.1 293.8 352.0 33							0	. (
31 0.0654 15.3 Choi (K2) 15 0.0179 55.9 20 0.0373 26.8 25 0.0463 21.6 intercept -0.0519 -0.0379 -0.0230 slope 0.0039 0.0034 0.0028 0.00388 R-sq 0.9124 0.9842 0.9569 0.951156 1/slope 255.1 293.8 352.0 33							0	.(
Choi (K2) 15 0.0179 55.9 20 0.0373 26.8 20 25 0.0463 21.6 20 intercept -0.0519 -0.0379 -0.0230 -0.0375 slope 0.0124 0.9842 0.9569 0.95115 1/slope 255.1 293.8 352.0 3								
20 0.0373 26.8 25 0.0463 21.6 intercept -0.0519 -0.0379 -0.0230 -0.03756 slope 0.0039 0.0034 0.0028 0.00388 R-sq 0.9124 0.9842 0.9569 0.951156 1/slope 255.1 293.8 352.0 3				0.0654				
25 0.0463 21.6 Average intercept -0.0519 -0.0379 -0.0230 -0.0375 slope 0.0039 0.0034 0.0028 0.00388 R-sq 0.9124 0.9842 0.9569 0.95115 1/slope 255.1 293.8 352.0 3	Choi (K2)							
Average Average intercept -0.0519 -0.0379 -0.0230 -0.0375 slope 0.0039 0.0034 0.0028 0.0038 R-sq 0.9124 0.9842 0.9569 0.95115 1/slope 255.1 293.8 352.0 3								
intercept -0.0519 -0.0379 -0.0230 -0.0375 slope 0.0039 0.0034 0.0028 0.00388 R-sq 0.9124 0.9842 0.9569 0.95115 1/slope 255.1 293.8 352.0 3		25			0.0463	21.6		
slope0.00390.00340.00280.00338R-sq0.91240.98420.95690.9511561/slope255.1293.8352.03							-	
R-sq 0.9124 0.9842 0.9569 0.951158 1/slope 255.1 293.8 352.0 3		•					-0.03758982	
1/slope 255.1 293.8 352.0 3		slope					0.003388317	
		•					0.951158861	
h/a (wintered) 12.2 11.1 0.1		•					300.3	
-b/a (x-interce 13.2 11.1 8.1		-b/a (x-interce	13.2	11.1	8.1		10.8	

B) Second: compare separately with no forcing of x-intercept:

Results: Individual and the average of the three unforced regression parameters do not differ greatly from the combined (forced) model, with averaged Tlow of 10.8 and 300 DD. Also the strongest data set (Park K1) has a Tlow of 11.1 and 294 DD. These DD values are high compared to the field data (see next). Perhaps they were brought into the lab before diapause was complete?

2) Field data: observed egg hatch near Oley, PA 2017 N=35 observation dates, and near Winchester, VA 2019 N=8 observation dates.

Methods: extract ADD10.4 values from Fig.s 2b and 3b, use nearby weather for each location year to estimate dates of events, then calculate S1DD10 values on those dates. ADD10.4 = simple average DD with 10.4C lower threshold S1DD10 = Single sine DD with 10C lower threshold

										Site Model Ca	lib 3					
	0	ley, PA 201	7 (station E586	60 elev 384 ft)		Winchester, VA (station E5449 elev 666 ft) Avg PA&VA						sta		days		
			rough approx						rough approx				E5860	E5449	diff	
Percent hatch DOY	Di	<u>ate</u>	ADD10.4Jan1	ADD10Jan1	S1DD10Jan1	DOY	D	<u>ate</u>	ADD10.4Jan1	<u>ADD10Jan1</u>	S1DD10Jan1	S1DD10Jan1	PA	VA	PA	
			(Fig. 2)						(Fig. 3)				2017	2019	9	2017
2	118	05/01/17	152	168	213		124	04/30/19	155	171	223	218	04/30/17	04/27/19	Э	-1
10	122	05/05/17	165	182	231		127	05/04/19	192	213	265	248				
20	131	05/16/17	190	208	264		128	05/06/19	205	229	281	273				
50	139	05/23/17	245	270	327		134	05/07/19	220	239	291	309	05/18/17	05/06/19	9	-5
75	148	05/28/17	280	305	362		138	05/09/19	238	257	309	336				
90	151	06/01/17	305	334	391		142	05/15/19	260	281	336	364				
98	158	06/10/17	365	398	456		146	05/24/19	345	394	436	446				

days

2019

-1

diff VA

Other was a shall a shift of

Results: With 2 location years, and fairly complete sampling of egg hatch, first hatch (ca. 2%) averaged 218 DD (Single sine Tlow 10C, start date Jan 1). With 50 and ca. 98% hatch at 309 and 446 DD, respectively. Weight: 1.0

6. Dechaine et al. 2021. Phenology of Lycorma delicatula (Hemiptera: Fulgoridae) in Virginia, USA. Environ. Entomol.50:1267-1275.

- used KOKV weather station; already determined that this station tends to be "cooler" than most other nearby stations for unknown reasons

- Also E8890, also nearby and perhaps more representative of the area.

								Site model ca	lib 3		
From Fig. 3 and as reported in results:		Checking:	Using:		Checking:	Using:	Average	Sta E8890	Sta E8890		
	Approx	KOKV	E8890		KOKV	E8890	2019 & 2020				
	Date	ADDs10CJan	Winchester VA	A	ADDs10CJan	Winchester VA	4	2019	2020	2019	2020
<u>Stage</u>	<u>2019</u>	<u>uspest rerun</u>	S1DDs10CJar	<u>11</u> 2020	<u>uspest rerun</u>	S1DDs10CJa	<u>S1DDs10CJa</u>	VA	VA ۱	/A VA	
First Egg hatch	05/01/19		199	05/07/20		190	195	05/02/19	05/14/20	1	7
Peak egg hatch	05/08/19		260	05/16/20		228	244	05/10/19	05/25/20	2	9
End egg hatch	05/16/19		300	06/01/20		354	327				
First L1	05/01/19	135	199	05/11/20	112	195	197				
Peak L1	05/16/19		300	05/28/20		320	310	05/24/19	06/03/20	8	6
End L1	06/02/19		488	06/10/20		469	479				
First L2	05/20/19	300	348	05/16/20	129	228	288				
Peak L2	06/03/19		493	06/10/20		469	481	06/08/19	06/19/20	5	9
End L2	06/19/19		653	07/04/20		757	705				
First L3	06/02/19	413	488	06/05/20	304	408	448				
Peak L3	06/21/19		678	06/29/20		685	682	06/26/19	07/03/20	5	4
End L3	07/09/19		925	07/20/20		1013	969				
First L4	06/26/19	649	736	06/29/20	566	685	711				
Peak L4	07/10/19		940	07/15/20		925	933	07/14/19	07/19/20	4	4
End L4	08/03/19		1291	08/14/20		1386	1339				
First Adult	07/09/19	835	925	07/20/20	887	1013	969	07/17/19	07/22/20	8	2
Peak Adult	09/05/19		1714	09/15/20		1764	1739	08/16/19	08/21/20	-20	-25
End Adult	11/06/19		2141	11/04/20		1988	2065				
First oviposition	09/11/19	1634	1785	09/15/20	1612	1764	1775	09/02/19	09/07/20	-9	-8
Results: In accord with most other studies	s. 195, 244, and	327 Dds from	Jan1 for 1st, p	eak, and end of egg hatch. C	Other stages a	lso in good acc	ordance. Weig	jht: 1.0			

7. Leach, H. and A. Leach 2020. Seasonal phenology and activity of spotted lanternfly (Lycorma delicatula) in eastern US vineyards. J. Pest Sci. 93:1215-1224.

- sampled vineyards around Kutztown, P	A mostly in 2019.		Site model calib 3		
	estimated	Using:	Sta D6615		
From Fig. 2 and as reported in results:	Approx	D6615	days		
	Date	Breinigsville	2019 diff		
<u>Stage</u>	<u>2019</u>	SSDD10CJan1	PA		
First Egg hatch	05/10/19		05/10/19	0	
Peak egg hatch	06/01/19	385	05/22/19	-10	
End egg hatch					
First L1	05/23/19	290			
Peak L1	06/07/19	440	05/31/19	-7	
End L1	06/22/19	586			
First L2	06/10/19	467			
Peak L2	06/19/19	552	06/19/19	0	
End L2	06/29/19	680			
First L3	06/29/19	680			
Peak L3	07/01/19	705	07/03/19	2	
End L3	07/13/19	878			
First L4	06/29/19	680			
Peak L4	07/18/19	953	07/21/19	3	
End L4	08/05/19	1215			
First Adult	08/12/19	1300	07/24/19	-19	
Peak Adult	09/14/19	1680	08/24/19	-21	
End Adult	11/02/19	1971			

Results: perhaps weigh these results at 0.5 due to one site-year and imprecise graphics

8. Laveaga, E.: 2022. Developmental and mortality rate of spotted lanternfly (Hemiptera: Fulgoridae) on grapevines and tree of heaven. M.S. Thesis. Penn. St. Univ. 83 pp.

- compare development rates on tree of heaven (TOH) vs. wine grapes alone and together

- did not post actual raw data so may be difficult to use results

- nearest weather station in uspest.org database is AR986, Macungie, PA (ca 6 km from Alburtis, PA where studies were conducted)

- studies in Alburtis, PA conducted between May-Nov 2021

- field collected egg masses were chilled then hatched then placed in treatment cages

- Degree-day calculation methods were as follows: used different thresholds for each instar according to Kreitman et al. 2020 data: 12, 12.43, 8.48, 6,29 for instars 1-4. Modified

simple avg method: so they substituted lower threshold instead of daily min temp in the simple avg formula. Dds for each instar using these different thresholds were then added together (??). - DDs for adult oviposition used Tlow of 10.4, simple average method. - so error for this stage should be minor and results can be re-analyzed

- Results for nymphal development are therefore not usable and cannot be reconstructed from the thesis

- Results for pre-oviposition should be somewhat usable but will have error and biases that cannot be entirely corrected or estimated

- Pre-oviposition results were: range 30-50 days, 250-500 DD (average DDs, Tlow=10.4C)

- Range of dates for this study not provided. Perhaps try reconstructing Single sine DDs using start dates that best match average results (42 days = 365 DD)

	From Fig. 2-0	6: Combined TOH, TO	H+Cabernet Franc, TOH+Concord		Pre-oviposition period: Use Avg Dds Tlow = 10.4 to find interval close to 365 Dds, then Re-calculate using uspest.org standard of Single Sine (S1) Dds, Tlow = 10.0						
				Sta: AR986	DdsAug30-Oct10		DdsAug31-Oct11 DdsSept1-Oct12				
	Average	Lower percentile	Upper percentile		AvgDDs10.4CS1D	Ds10.0C	AvgDDs10.4C S	S1DDs10Jan1	AvgDDs10.4CS1	1DDs10.0C	
Days	42.5	5 38	49		374	394	366	385	358	377	
DD10.4 C	365	335	440								

.

Other references not used in phenology model analyses:

- Maino, J.L, et al. 2021. Mapping the life history, development, and survival of spotted lanternfly in occupied and uninvaded areas. Biol. Invasions 24:2155-2167
- Used Kreitman results but re-scaled them to match development rates observed by Park et al (2009).
- Fitted Briere non-linear models to Kreitman and other data sources. Is this approach appropriate for modeling using daily average temperatures?
- Results may not be usable but perhaps could be compared to our modeling results
- Elsensohn, J., et al. 2023. Development and survivorship of Lycorma delicatula on cultivated and native Vitis spp. of the Eastern US. J. Econ. Entomol. 116:2207-2211.
- Development in cages at ambient temperatures; duration in days reported but not dates so cannot reconstruct degree-day results

9. Combine and compare results from above studies

Source:	2. Liu 2019	3. Nixon et al	4. Murman et	5. Smyers et a	6. Dechaine e	7. Leach&Lea	ach						Site model
Locations:	PA 2017		PA 2015&201										CALIB3
weight (peak egg hatch)	1			1	1		unweighted			weighted	Revised	Estimated	avg diff
<u>Stage</u>	<u>1 site year</u>	<u>2 site years</u>	<u>2 site years</u>	<u>2 site years</u>	<u>2 site years</u>	<u>1 site year</u>	<u>Average</u>	St. Dev. C.	<u>/.</u>	<u>Average</u>	Oviposition	1 st to 50% O	<u>V</u> days
First Egg hatch	189	1	208	218	195		202	13.1	6.5	202			-1.8
Peak egg hatch	232			309	244	385	293	70.3	24.0	279			-1.0
End egg hatch	381			446	327		385	59.6	15.5	385			
weight (1st L1 to 1 st adult)	1	. 1	0.7		1	0.5							
First L1	198	285	208		197	290	236	47.7	20.3	231			
Peak L1	381	367	422		310	440	384	50.9	13.3	375			-0.1
End L1	707	595	830		479	586	639	133.8	20.9	632	1		
First L2	397	379	420		288	467	390	66.0	16.9	379			
Peak L2	574	510	617		481	552	547	53.2	9.7	541			0.2
End L2	939	745	1048		705	680	823	161.7	19.6	824			
First L3	616	529	628		448	680	580	91.6	15.8	565			
Peak L3	745	727	778		682	705	727	37.0	5.1	726	i		0.0
End L3	1078	981	1017		969	878	985	73.1	7.4	995			
First L4	796	821	785		711	680	758	60.0	7.9	766	i		
Peak L4	1078	958	1024		933	953	989	60.3	6.1	991			0.1
End L4	1309	1355	1256		1339	1215	1295	58.3	4.5	1307			
First Adult	939	1123	1011		969	1300	1068	147.1	13.8	1045			-0.7
Peak Adult	1331	1450	1120		1739	1680	1464	254.2	17.4	1463			-7.1
End Adult	1878	2026			2065	1971	1985	80.8	4.1	1985			
First oviposition	1682				1775		1682	65.4	3.9	1682	1675	5 140	6.3
Peak oviposition	1828						1828			1828	1821	L	
End oviposition	1858						1858			1858	1858	3	

Notes: In PA sites, egg-laying is at very end of season - may need to lower the devel. threshold temp. for PreOV adults, otherwise temps could drop too quickly

to allow egg-laying to happen or finish. Since these bugs sun themselves, likely they can utilize lower temps than 10C for pre-OV and egg-laying

Consider this idea in further calibrations.

Cumulative Cumulative Estim. Stage Estim. Stage Average of Cumulative 1. Kreitman 5. Smyers et ¿8. Laveaga 2022 Dds to first Dds to Peak Durations fro Durations fro first to first and lab data field → lab Field Event Event peak to peak peak to peak <u>Stage</u> first to first 202 279 279 241 320 Egg 202 241 8.699095023 L1 231 375 148 166 157 398 185 L2 379 541 186 185 186 584 283 462.4 L3 565 726 201 265 233 817 401 L4 991 472 766 279 376 1192 562 Total L1-L4 766 991 814 1088 890 1459 Adults (pre OV) 1045 1463 637 365 630 1822 370 (range 168 (grapes) to 370 (Tree of Heaven)) Oviposition 1682 1828 End oviposition 1858

2) Estimated stage Durations (Tlow=10C, DDs after Jan 1) using first to first and peak to peak vs. Kreitman lab results.

Results: These field results (Liu, Nixon, Murman, Smyers, Dechaine) are fairly similar with moderate C.V. values and representing a range of 4-9 site-years depending on stage. These instar durations derived from first (Ln) to first (Ln+1) and peak to peak instars should be more useful than the lab findings of Kreitman et al. For the pre-oviposition interval, we will use the average of peak 1st adult to peak 1st OV (365) and Laveaga results for TOH (370) as a conservative value (368 DD), but this estimate is in need of further study. First to 50% oviposition is estimated as 1828 (peak OV) minus 1728 (1st OV), equal to 100 DD

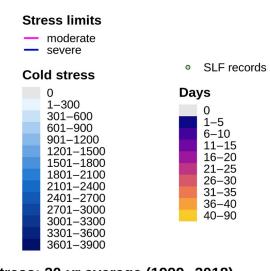
CLIMATE SUITABILITY MODEL

See white paper for a detailed description of methods used to develop the climate suitability model

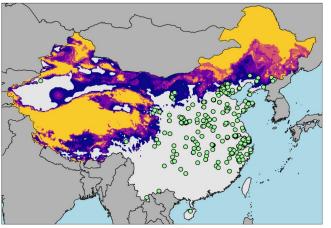
Final parameters reported below

DDRP Cold Stress	Value	<u>Units</u>	DDRP Heat Stress	<u>Value</u>	<u>Units</u>
cold stress threshold	-16	С	heat stress threshold	37	С
limit 1 (mod. cold stress)	300	DDC	limit 1 (mod. heat stress)	115	DDC
limit 2 (sev. cold stress)	475	DDC	limit 2 (sev. heat stress)	175	DDC

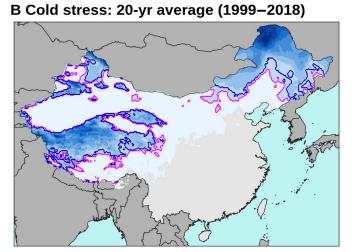
Methods overview

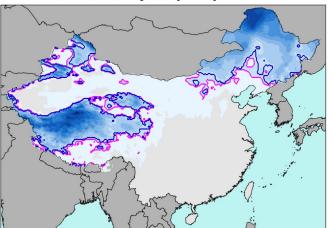

Cold stress parameters

- Analyzed coldest temperatures experienced at locations with 392 presence records in China for each year between 1999 and 2018


- Analyses used tmax and tmin data from CDAT dataset (0.1 degree resolution)

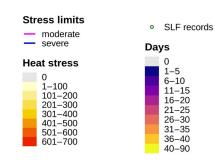
- 98% (385/392) of records occurred in areas with average weekly Tmin values \geq -16C

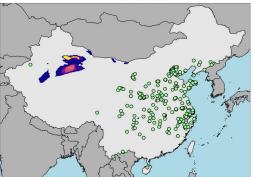

- Fine-tuned cold stress limits to include majority of records for most extreme years in terms of cold stress accum (B,C in below map)



A Consecutive cold days ($T_{min} < -16$ °C)

C Cold stress: cold year (2001)


Heat stress parameters


- Analyzed hottest temperatures experienced at locations with 392 presence records in China for each year between 1999 and 2018

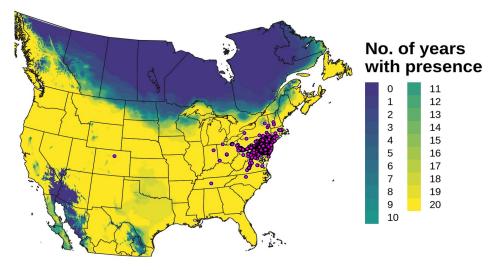
- 99% (389/392) of records occurred in areas with average weekly Tmax values \leq 37C

- Fine-tuned heat stress limits to include majority of records for most extreme years in terms of heat stress accum (B,C in below map)

A Consecutive hot days (T_{max} > 37 °C)

B Heat stress: 20-yr average (1999–2018)

C Heat stress: Hot year (2008)



Analysis using cold and heat stress parameters above for CONUS plus

- Ran DDRP for invaded range using climate data for 20 recent years (i.e., 1/1 to 12/31 for each year)

- Analysis used Daymet data for 2002-2021 (1 km2 resolution), cropped to S. Canada and N. Mexico

- Estimated presence as areas not under moderate or severe stress exclusions
- Results indicate that presence predicted across all years in most of CONUS

